Unit: mm

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-MOSV)

# 2SK3398

# Switching Regulator and DC-DC Converter Applications Motor Drive Applications

• Low drain-source ON resistance: RDS (ON) =  $0.4 \text{ m}\Omega$  (typ.)

• High forward transfer admittance:  $|Y_{fs}| = 9.0 \text{ S (typ.)}$ 

• Low leakage current:  $IDSS = 100 \mu A (max) (VDS = 500 V)$ 

• Enhancement-mode:  $V_{th} = 2.0 \text{ to } 4.0 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA})$ 

#### **Absolute Maximum Ratings (Ta = 25°C)**

| Characteristics                                      |                | Symbol           | Rating    | Unit |  |
|------------------------------------------------------|----------------|------------------|-----------|------|--|
| Drain-source voltage                                 |                | $V_{DSS}$        | 500       | V    |  |
| Drain-gate voltage ( $R_{GS} = 20 \text{ k}\Omega$ ) |                | $V_{DGR}$        | 500       | V    |  |
| Gate-source voltage                                  |                | $V_{GSS}$        | ±30       | V    |  |
| Drain current                                        | DC (Note 1)    | ID               | 12        | Α    |  |
|                                                      | Pulse (Note 1) | I <sub>DP</sub>  | 48        | A    |  |
| Drain power dissipation (Tc = 25°C)                  |                | $P_{D}$          | 100       | W    |  |
| Single pulse avalanche energy (Note 2)               |                | E <sub>AS</sub>  | 364       | mJ   |  |
| Avalanche current                                    |                | I <sub>AR</sub>  | 12        | Α    |  |
| Repetitive avalanche energy (Note 3)                 |                | E <sub>AR</sub>  | 10        | mJ   |  |
| Channel temperature                                  |                | T <sub>ch</sub>  | 150       | °C   |  |
| Storage temperature range                            |                | T <sub>stg</sub> | -55 to150 | °C   |  |

9.2 max
7.0±0.2

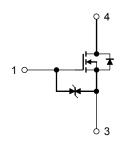
1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0.2 1.0±0

Weight: 0.74 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

#### Thermal Characteristics

| Characteristics                     | Symbol                 | Max  | Unit |  |
|-------------------------------------|------------------------|------|------|--|
| Thermal resistance, channel to case | R <sub>th (ch-c)</sub> | 1.25 | °C/W |  |


Note 1: Ensure that the channel temperature does not exceed 150°C.

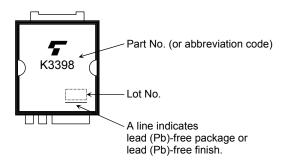
Note 2:  $V_{DD} = 90~V,~T_{ch} = 25^{\circ}C$  (initial), L = 5.85 mH, R<sub>G</sub> = 25  $\Omega$ , I<sub>AR</sub> = 12 A

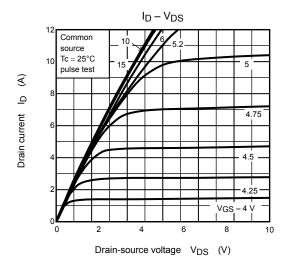
Note 3: Repetitive rating: pulse width limited by maximum channel temperature

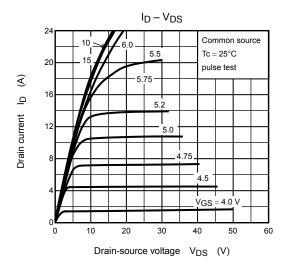
This transistor is an electrostatic-sensitive device. Please handle with caution.

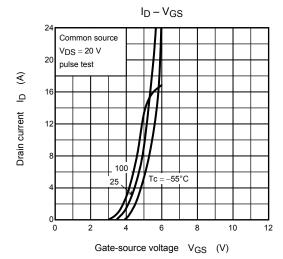
#### **Circuit Configuration**

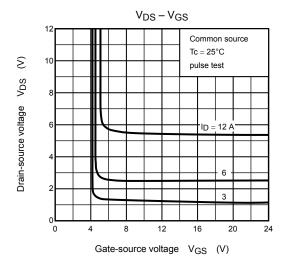


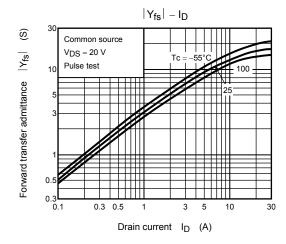

## **Electrical Characteristics (Ta = 25°C)**

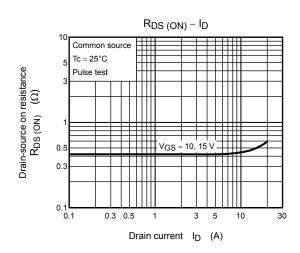

| Chara                                           | acteristics    | Symbol               | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min | Тур. | Max  | Unit |
|-------------------------------------------------|----------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|
| Gate leakage cur                                | rent           | I <sub>GSS</sub>     | $V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _   | _    | ±10  | μΑ   |
| Drain-source brea                               | akdown voltage | V (BR) GSS           | $I_G = \pm 10 \ \mu A, \ V_{DS} = 0 \ V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ±30 | _    | _    | V    |
| Drain cut-OFF cu                                | rrent          | I <sub>DSS</sub>     | V <sub>DS</sub> = 500 V, V <sub>GS</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _   | _    | 100  | μА   |
| Drain-source brea                               | akdown voltage | V (BR) DSS           | $I_D = 10$ mA, $V_{GS} = 0$ V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500 | _    | _    | V    |
| Gate threshold vo                               | oltage         | V <sub>th</sub>      | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 1 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0 | _    | 4.0  | V    |
| Drain-source ON                                 | resistance     | R <sub>DS</sub> (ON) | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 6 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _   | 0.4  | 0.52 | Ω    |
| Forward transfer                                | admittance     | Y <sub>fs</sub>      | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 6 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0 | 9.0  | _    | S    |
| Input capacitance                               | )              | C <sub>iss</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   | 2040 | _    | pF   |
| Reverse transfer capacitance                    |                | C <sub>rss</sub>     | $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _   | 200  | _    |      |
| Output capacitance                              |                | Coss                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   | 630  | _    |      |
| Switching time                                  | Rise time      | t <sub>r</sub>       | $V_{GS}$ $0 \text{ V}$ $V_{GS}$ $0 \text{ V}$ $0  V$ | _   | 22   | _    | - ns |
|                                                 | Turn-ON time   | t <sub>on</sub>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   | 58   | _    |      |
|                                                 | Fall time      | t <sub>f</sub>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   | 36   | _    |      |
|                                                 | Turn-OFF time  | t <sub>off</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   | 180  | _    |      |
| Total gate charge (gate-source plus gate-drain) |                | Qg                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   | 45   | _    | nC   |
| Gate-source charge                              |                | Q <sub>gs</sub>      | $V_{DD} \simeq 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 25   |      |      |
| Gate-drain ("miller") charge                    |                | Q <sub>gd</sub>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 20   |      |      |

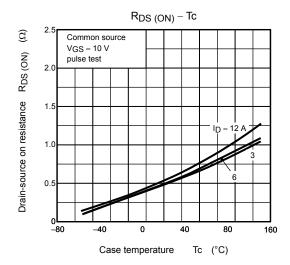

# **Source-Drain Ratings and Characteristics (Ta = 25°C)**

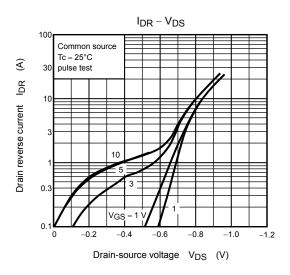

| Characteristics                           | Symbol           | Test Condition                                 | Min | Тур. | Max  | Unit |
|-------------------------------------------|------------------|------------------------------------------------|-----|------|------|------|
| Continuous drain reverse current (Note 1) | $I_{DR}$         | _                                              | _   | _    | 12   | Α    |
| Pulse drain reverse current (Note 1)      | I <sub>DRP</sub> | _                                              | _   | _    | 48   | Α    |
| Forward voltage (diode)                   | V <sub>DSF</sub> | I <sub>DR</sub> = 12 A, V <sub>GS</sub> = 0 V  | _   | _    | -1.7 | V    |
| Reverse recovery time                     | t <sub>rr</sub>  | $I_{DR} = 12 \text{ A}, V_{GS} = 0 \text{ V},$ | _   | 1200 | _    | ns   |
| Reverse recovery charge                   | Q <sub>rr</sub>  | dl <sub>DR</sub> /dt = 100 A/μs                | _   | 16   | _    | μС   |


## Marking



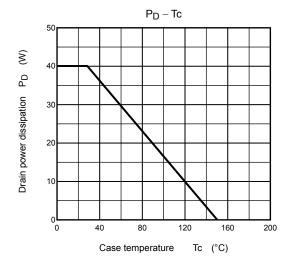



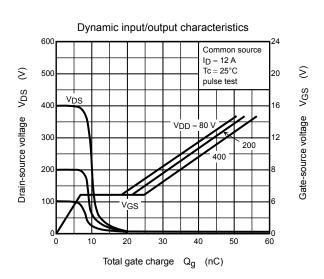



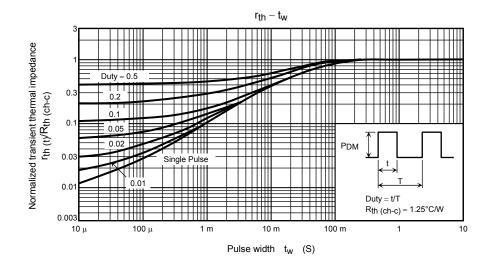



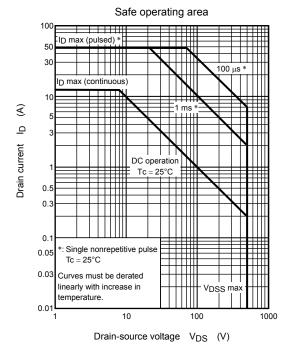


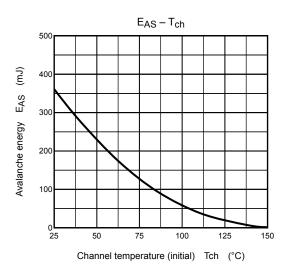


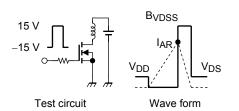














$$R_G = 25~\Omega$$
  
 $V_{DD} = 90~V,~L = 4.3~mH$ 

$$\mathsf{EAS} = \frac{1}{2} \cdot L \cdot l^2 \cdot \left( \frac{\mathsf{BVDSS}}{\mathsf{BVDSS} - \mathsf{VDD}} \right)$$

#### **RESTRICTIONS ON PRODUCT USE**

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
  compatibility. Please use these products in this document in compliance with all applicable laws and regulations
  that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
  occurring as a result of noncompliance with applicable laws and regulations.